
PH: 80020-7683(98)00088-2

~ Pergamon
Int. J. Solids Structures Vol. 35. Nos 34-35, pp. 4637·4657,1998

~) 1998 Elsevier Science Ltd. All rights reserved
Printed in Great Britain

002(}-7683j98j$-see front matter

A THERMODYNAMICALLY CONSISTENT
FORMULATION OF MAGNETOPOROELASTICITY

S. LOPATNIKOV
Department of Chemistry, Moscow State University, Moscow, Russia

and

A. H.-D. CHENGt
Department of Civil and Environmental Engineering, University of Delaware, Newark,

Delaware 19716, U.S.A.

(Received 25 July 1997; in received/arm 25 February 1998)

Abstract-The dynamical theory of a porous, elastic, and magnetically inert solid body infiltrated
by a ferromagnetic liquid is formulated. This type of magnetoporoelastic material opens a wide
range of technical applications, such as controlled vibration dampers, sensors, and adaptive mirrors.
The irreversible deformation and nonlinear coupling among the solid elastic, fluid rheological, and
magnetic effects is derived based on the Biot-Frenkel theory with thermodynamic considerations.
The thermal effect, however, is not considered in this paper. A linearized version of constitutive
equations and the dynamic equations are introduced. © 1998 Elsevier Science Ltd. All rights
reserved.
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elastic constitutive constants
elastic constitutive constants
magnetic induction of fluid and solid phase
resistivity coefficient
magnetic constitutive constants
coefficients for perturbed magnetic equation
solid internal volumetric strain
solid internal strain tensor
solid internal deviatoric strain tensor
variation of free energy of the fluid and solid phase
volume averaged free energy density of fluid and solid phase
mechanical part of free energy density
free energy density of the fluid and solid phase
shear modulus of solid phase
gravity component
average magnetic field of saturated porous medium
magnetic field of fluid and solid phase
interacting force density between phases
fluid and solid phase bulk modulus
thin layer thickness
magnetic moment per unit volume
magnetic moment of ferromagnetic particle
current and initial concentration of ferromagnetic particle
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volume averaged fluid and solid virtual displacement
virtual work of the fluid and solid phase
virtual work density of the fluid and solid phase

fluid and solid phase magnetic field weighing factor
fluid and solid external volumetric strain
fluid and solid external strain tensor
fluid and solid external deviatoric strain tensor
fluid and solid virtual displacement
magnetic field partition factor
magnetic permeability of fluid and solid phase
fluid kinematic viscosity
fluid dynamic viscosity
external linear strain component of fluid and solid phase
fluid, solid, bulk and added mass density
fluid, solid and total stress tensor
porosity
magnetic susceptibility
bounding surface ofn
external surface of fluid and solid phase
volume of total sample, fluid and solid matrix
to denote perturbed quantities

l. INTRODUCTION

Colloid solutions and stabilized emulsions of small-size ferromagnetic particles having high
values of magnetic moment are finding a wide range of applications in modern technology,
such as active optical surfaces, mechanical manipulators, actively controlled vibration
dampers, etc. (Ehrgott and Marsi, 1992; Fertman, 1988; Papell, 1965; Takeomi and
Tickatsumi, 1988; Shliomis et al., 1988). However, the fact that such materials are liquid
has limited their even broader usage. In many cases better effect may be achieved by using
non-liquid and highly elastic materials. A solid material can provide a support surface, yet
can still significantly change its volume and form when exposed to an external magnetic
field. One possibility to realize such a kind of magneto-active composite material is to
organize it as a magnetically relatively inert solid matrix containing magnetic inclusions,
such as the magnetic rubber. This type of material, however, exhibits relatively low magnetic
permeability as for non-connected inclusions the magnetic permeability is dominated by
that of the inert matrix, not of the inclusion.

Yet another innovative idea is to create a material that is made of a porous, elastic
solid matrix, which is magnetically relatively inert, but is infiltrated with a ferromagnetic
liquid (Lopatnikov, 1997). The major physical difference between such solid material with
inclusion and the proposed magnetoporoelastic material is that the high magnetic phase in
the latter case is continuous and can conduct a magnetic field, as opposed to a solid case
of isolated inclusions. A porous penetrable material can have a magnetic constant close to
that of a ferromagnetic fluid.

In contrast to the magnetorheological liquids, the magnetoporoelastic materials have
the mechanical properties of a solid. They can retain their form for an indefinite amount
of time if the surface pores are closed, or pore size is small enough and the associated
surface tension is high enough to prevent flow. On the other hand, the body may be highly
deformable if a relative movement of the magnetic and non-magnetic phases is allowed on
the surface. Estimates show that a magnetoporoelastic material can be prepared so that
under moderate magnetic fields the deformation can reach to about 1-10% of its thickness
(Lopatnikov, 1997).

The dynamic properties of the magnetorheologicalliquid saturated porous media are
also unique. For instance, at the low frequency range, a body can be excited by the dynamic
of viscous pore liquid under the pressure induced by external magnetic field. Also, it is
possible to show that the sound velocity and dissipation of acoustic waves depend on the
applied external field.

These properties suggest that these materials are open for a wide range of applications.
They can be useful, for instance, as the active bodies of devices of adaptive optics (for
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instance, for the manufacturing of magnetically controlled mirrors); as controlled dampers
of vibration; for controlled filters of a gas or liquids, etc.

There have been a fair number of theoretical investigations on ferromagnetic liquids,
and relatively few in solid composites with ferromagnetic inclusions. To our knowledge,
the theoretical study of porous elastic materials saturated with ferromagnetic liquids has
not been conducted. It is the purpose of this paper to provide a formulation of the dynamic
behavior of magnetoporoelastic materials based on the Biot-Frenkel theory (Biot, 1941,
1955, 1956a, b, 1962; Frenkel, 1944).

Following thermodynamic considerations, we present the free energies of solid and
fluid phases with mechanical and magnetic origins. Thermal energy is not included in the
present effort. By the virtual displacement program, irreversibility and nonlinearity due to
porosity variation emerges. Stresses are identified as those from mechanical or magnetic
origins, or from the coupling of the two. For the magnetic field, a simple model of effective
magnetic permeability for the composite material is proposed. Constitutive and dynamic
equilibrium equations are derived. These equations are then linearized to provide some
aspects of the linear dynamic behavior of such bodies.

2. VIRTUAL WORK

First of all we need to generalize the theory of poroelasticity to include the effect of a
ferromagnetic fluid and its interaction with a magnetic field. The most appropriate approach
is to consider the thermodynamics of deformation of a composite material using the well
known principle of virtual work to account for the energy transfer between the phases.

For a representative elementary volume (REV) of porous medium saturated with
fluid, let 0 be the volume of the entire sample, OS be the volume of the solid matrix, and nt
be the fluid part (see Fig. 1). It is clear that 0 = os+nt. The porosity of the sample is
defined as ¢ = nt/O. The portion occupied by the solid is obviously OS/o = 1- ¢. Let I:
denote the boundary of0, Sf the boundary ofnt, and S' the boundary ofOs. The intersection
Si = SfnS' represents the surface of internal pore space. Then l:' = S,\S is the external
part of the solid phase surface and l:f = Sf\S is the external part fluid phase surface. It is
clear that l:' ULf = L. We shall also assume that volumetric porosity is equal to areal
porosity, namely, l:f/l: = nt/O = ¢ and l:s/l: = 1- ¢.

Consider a sample of the porous medium having porosity ¢ which is deforming under
the surface traction tf and tf, respectively, acting on S' and Sf. These traction forces can be
expressed as tf = (if}nj and t{ = (i£nJ, where (if) and (i£ are, respectively, the solid and fluid
stress tensor, and nj and nJ are components of the outward normal vector of S' and Sf,
respectively. The virtual work done by the surface traction to each phase is, therefore,

(j1flS = f (isn'(jr'dSlJ J St
S'

(1)

(2)

where b1fl' and b1flf are virtual work, respectively, of the solid and the fluid phase, be and
b({ are solid and fluid virtual displacements, respectively. Within each phase, we further
decompose the work into those acting on the internal surface, b1f/'inh and those on external
surface, b1flext :

(3)
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Fig. 1. Illustration of various domains and boundaries of solid and fluid phases.

(4)

In the above we note that nj = nf = nj on the external surface 1:" and ~t

To simplify the derivation, but without the loss of generality, we shall follow the
classical approach of Landau and Lifshitz (1982) (Sections 15 and 16). We consider the
REV as a thin, flat layer. This assumption reduces the dimensionality and simplifies the
presentation, yet without changing the outcome in a multi-dimensional analysis. This planar
layer has a constant thickness h and constant material properties. We assume that the
surface is traction and body force on and in the REV are uniform. We subject the REV to
certain infinitesimal virtual displacements of solid and fluid, bC and bU, whose directions
are arbitrary and need not to be that of the outward normal of the plane, n.

Under these conditions, the work done by forces on the external surfaces, as defined
in (3) and (4), can be written as:

where

[rjf/'~xt = IT;jnj r bC dS = (I-¢)1:olT;jnjbUf
JJ:'

b1fl!xt = (J£n j IbU dS = ¢1:o(J&n j bU{Jr l

(5)

(6)
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(7)

(8)

are the averaged displacements of each phase over the external surface of the REV (Fig.
1), ¢ is the porosity, ~o is the initial total external surface, ~~ =(I-¢)~o and ~£ = ¢~o.

For work done on the internal surfaces, as defined in (3) and (4), we notice that a:j = a{,
15(: = be, yet nj = - nJ. It is clear that

(9)

3. ENERGY BALANCE

From energy conservation, the variation of work is equal to the variation of free energy

(10)

(II)

where ffS and fff are, respectively, free energy of the solid and the fluid phase. Usingfto
denote the free energy per unit volume, we have, within the first order of approximation,
the variation of free energy as

bffS= 15 rPdQ = PM}:' +Q~bP
In'

bfff = 15 r ff dQ = Ff bQf+Q6bFf
Jnf

where F is the volume averaged free energy density given as

FS =_1 rPdQ
Q~ In'

Ff =_1 r pdQ
Q£ Jnf

(12)

(13)

(14)

(15)

where Q~ and Q6 are, respectively, the initial undeformed solid and fluid volume.
Following the definitions in (3), (4), (10) and (II), the energy equations can be

expressed as

(16)

(17)

Using (12) and (13) in the above, we obtain

(18)

(19)
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Through the variation of solid and fluid volume terms, bf.F and bQf, the role of porosity
variation is introduced:

b!1' = 15[(1-4»0] = (1-4»150-00 154> (20)

(21)

where 0 0 is the initial total volume. Referring to the "thin-layer" of thickness h, we may
further express

bU'O150 = busLo = _n_O

" h
(22)

in which bU~ = bUfni is the normal component of bUf vector, defined in (7), and 0 0 = Loh.
Here we introduce the notation of solid linear strain based on external virtual displacement
as

(23)

and its normal component ~~ = ~fn,. Using (22) and (23), we can rewrite (20) as

(24)

This shows that the change of solid volume contains a solid strain part and a porosity
variation part. By the same token, the fluid volume change is

(25)

where b~{, = bU{,/h is the fluid normal strain.
Substituting (5), (6), (24), (25) and (18) and (19), and dividing the equations by Qo,

we find

A-.((J/bftn.-b;:fFf-bFf) -FIbA-. = -bWf"f' IJ ~I J ':,n 0/ mt

(26)

(27)

where ~nt = "fI/int/OO is the density of work done by forces on the pore surface. If the two
equations are summed, the energy balance of the combined solid and fluid phase is

To generalize the result from a thin layer to a three-dimension body, it is convenient to
introduce the notation of external strain tensor as

(29)

(30)

It is clear that
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are the volumetric strains. Equation (28) then becomes
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(31)

(32)

We may consider (33) as the law ofconservation of total energy for porous media. Equation
(33) differs from earlier results (Biot, 1941, 1955; Nikolaevskiy, 1984, 1996) in that it
contains a porosity variation term. This term allows the modeling of the structural change
of porous media which is generally an irreversible process. Its modeling based on the virtual
displacement approach will be discussed later. It is also important to note that the virtual
work associated with the internal surface does not appear in (33). It is possible to eliminate
the b¢ term between (26) and (27) such that the internal work term b Wint appears in the
energy equation. In that case, a model for b Win, must be provided.

4. VARIAnON OF FREE ENERGY

We next consider the variation of free energy. For convenience, we shall consider only
the free energy due to the elastic and the magnetic fields, and shall ignore heat energy and
energy of other origins. We also restrict the attention to isotropic elastic medium. We hence
write

(34)

(35)

where HS and I¥are the microscopically averaged magnetic fields for solid and fluid phase,
respectively. Here we have introduced the internal strain e:; which is defined from the
volume averaged virtual displacements

and

bUl = ~ r. bUdnI n~Jnl.1

I
be~ = - (bu' .+bu~ .)

IJ 2 I,j j,1

(36)

(37)

(38)

Equations (36) and (37) should be compared with (7) and (8), as the former pair are
average over the volume of the solid and fluid phases, while the latter are averaged over
the surface of REV. Hence a distinction is made between the volume averaged "internal"
strains e1j and e& as needed in defining the free energy, and the external surface average
"external" strains 8:j and 8£ associated with the virtual work. The solid external strain 8!j is
also the apparent strain of the REV as observed from the external surface of the volume.
The internal and external strains are not equated by a trivial relation due to the possible
presence of porosity variation attributed to the internal rebuilding of pore structure. We
also notice that for the fluid part, the fluid density PI is used as the variational parameter
in lieu of fluid strain because a significantly larger deformation for fluid (such as gas) than
that for solid will be considered, The use of fluid density will allow the introduction of the
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equation of state for fluid when necessary. Utilizing (24) and (25), we can show that the
volumetric strains and density variation are related to porosity variation as

(39)

(40)

in which we denote ~es = ~e:i' It is clear that only in the absence of porosity variation, the
internal and external strains are equal.

The functional relationships in (34) and (35) allow us to write

(41)

(42)

in which we have separated e:j into a volumetric part, eS
, and a deviatoric part,

(43)

We note that not all of the strain components are independent. For example, for an isotropic
material, there exist only two quadratic invariants e' •e' and <e:j><e:j>(Einstein summation
of repeated indices is implied throughout the paper) that the free energy is dependent upon.
In (41) and (42) the delimitation with subscript T is used to emphasize the isothermal
nature of the process and shall be dropped henceforth. By definition (Landau and Lifshitz,
1982), the magnetic induction vector (magnetic displacement), B is the derivative of free
energy with respect to magnetic field, H,

(44)

(45)

In the above BS and Ware the magnetic induction of solid and fluid phase, respectively.
Substituting (39)-(45) into (33), we obtain:

{[ ( I) J } [( ::l) ( ::l r)Jr r of III I S uF
s

r uF _
+4> (Jij- F -PI apr ~ij &ij+ 41T.Bi~Hi + F + aes - F -PI apI ~4> - 0

(46)

where B j and Hi are Cartesian components of Band H.
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5. VARIATION OF POROSITY

Equation (46) shows that, in the general case, there is an internal degree of freedom
associated with possible space redistribution of the material. This part of deformation is
responsible for the irreversible work energy of the system. In the present case, this degree
of freedom is described by the variation of porosity only.

In the special case that the deformation involves only a pure rebuilding of the porous
medium and there is no volumetric deformation of the solid and fluid phases, namely,

(jPt = /)es = 0 (47)

(39) and (40) show that the external strains &S and (jt are directly a consequence of porosity
variation. This reduces the degree of freedom of (46). In the absence of magnetic field, the
variation of total energy as well as the work done by external forces along this deformation
path (&s, (jt) are equal to zero. It means that the sample is at its initial quasi-neutral
equilibrium and can change its structure under arbitrarily small action. This case applies
to an unconsolidated medium.

On the other hand, if a consolidated medium is in a stable initial geometric configur
ation, the variation ofenergy will not be zero under all trajectories of (&5, (jt). In that case,
the energy surface in (&S, (jt) space must have a minimum and the associated Hessian
matrix must be negative. It means that one cannot rebuild the internal structure of a porous
medium without changing the energy in the phases. These conditions are satisfied if there
exists some additional relation between (j¢ and other state variables, such as (jPI and (je',
or &' and (jt. For example, we may write

(48)

In the above, A~ and Arare constitutive coefficients, and the factor ¢(I- ¢) is introduced
for convenience of obtaining a more symmetric form in subsequent derivation. Since we
assume that the mechanical variations take place under stationary magnetic field, the
magnetic field variables enter the relations only through the constitutive coefficients. Alter~
natively, (48) can be expressed as

(49)

The deformation of porous medium is a reversible process only if (j¢ defined either in (48)
or in (49) is a complete differential. This will impose limitation on the form of coefficients
As and At (or A~ and Ai). Hence, generally speaking, the deformation is irreversible.

From (39), (40) and (49) we can solve for

(jeS = (1- ¢A,)M - ¢Af&l (50)

(51)

We can consider (50) and (51) as differential relations between the internal thermodynamic
mechanical parameters and external parameters. Using (50) and (51) in (49) we obtain

(52)

Comparing with (48), this shows that AS' A f , A~ and Arare related as
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, AtAt = -----'-----
(l-¢As)+(l-¢)At

(53)

(54)

The constitutive relations introduced so far involve volumetric strains. For isotropic elastic
material, a relation between the external and internal deviatoric strain needs to be estab
lished. The constitutive relation is given by

(55)

where Cs and CJ are constitutive constants, and (beij) = befj-~bijbC:s and
(be~) = be~ -~ bijbc:J are deviatoric external strains of solid and fluid, respectively. Here we
note that a Newtonian fluid does not resist shear, hence CJ = O. In general, however, the
dynamic and rheological effects can come into play. The coefficient Ct can not only be a
constant, but also take the form of a time operator, such as

d
C =r-

J dt (56)

where r is a characteristic time. There exist several characteristic times. One is associated
with the Biot characteristic frequency, and a second is related to the ratio of fluid and solid
shear properties (viscosity and shear modulus). For dynamic excitation around these
characteristic time ranges, their effect becomes important.

6. STRESS TENSOR

We now examine the terms bHf and bH{ in (46). The magnetic field is governed by
the equation

VxH=O (57)

which implies that it can be written as the gradient of a potential (with a negative sign)

We can write

H= -Vcp

bH = -b(Vcp) = - V(bcp)

(58)

(59)

Under a virtual displacement, we assume that each particle carries the potential with it.
The change of potential at a fixed point can be expressed by the Eulerian derivative

(60)

Utilizing the thin-layer approach, we assume that the magnetic field H and the strain b~

are uniform in the layer. The virtual displacement can, therefore, be written as a linear
function of z (perpendicular to the layer)

btl = b~z

Substituting (60) and (61) into (59), we find

(61)
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6H = -V(H'6~z) = -(H'6~)Vz
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(62)

Here we note the constancy of H and 6~. Since Vz is in the n direction, we can write (62)
in the general coordinate system for solid and fluid phases as (cf. Landau and Lifshitz, 1982
Section 15)

6H; = -Hj&ij

6H{ = -H{&{

(63)

(64)

Next, we introduce the effective pressure due to mechanical deformation in the solid and
fluid phase as

( OF')p"(eS
, <eij), W) = - F' + oe

s

/ J' (. OFf)p (pf,H ) = - FJ -Pf-
OPf

(65)

(66)

In the absence of a magnetic field, (65) and (66) are the usual thermodynamic definition of
pressure.

Substitution of (49), (55) and (63)-(66) into (46) yields the following

(67)

Because all virtual displacements are independent, we have

(68)

(69)

Now we have completed the program of virtual displacement. Equations (68) and (69)
define the stress tensor in the solid and fluid phases. The first term on the right hand side is
a magnetic stress. The pressure terms, as wilI be demonstrated in the next section, contains
a mechanical part and a magnetic part. It is important to point out that these equations
are valid, in general, for arbitrary equations of state of fluid, solid and magnetic field, as
opposed to equations suggested in earlier works (Biot, 1941, 1955; Nikolaevskiy, 1984,
1996). Some specific cases will be investigated in the following.

7. MAGNETIC PRESSURE

Let us consider (65) and (66) in more detail by separating the effects of mechanic and
magnetic fields. The free energy of a ferromagnetic liquid can be expressed as (Landau and
Lifshitz, 1982; Takeomi and Tickatsumi, 1988)
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(70)

where F6 is the mechanical free energy (in the absence of a magnetic field). It is well known
from thermodynamics that the derivative of free energy per unit mass with respect to
specific volume is the pressure (with a negative sign) :

(71 )

Using (70) and (71), (66) can be expressed as

(72)

in which we have analogously defined a magnetic pressure which is associated with the
magnetic part of free energy under mechanical variation:

The magnetic induction vector can be written in this form

BI = HI+4nMf

(73)

(74)

where M /, known as the magnetization vector, is the magnetic moment per unit volume. In
the present case we note that the ferromagnetic liquid is an emulsion made of ordinary
liquid containing suspended nano-size ferromagnetic particles. Each of the particles is an
elementary magnet. The magnetic moment density MI' is averaged over an REV and is
dependent on the concentration of the particles. The temperature dependence is also present
because the disordering of the individual magnetic moments cancels out the field. This
effect, however, is not explicitly considered here. Using (74), we can present (73) as

(75)

By analogy, we can develop the equations for solid phase. The pressure is partitioned into
two parts

where

p' = P~,+PH

( OF')P'", = - Fb+ 0;

(76)

(77)

is the partial pressure from the change of mechanical free energy under mechanical virtual
displacement, and .
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(78)

is the partial pressure from the change of magnetic free energy under a mechanical virtual
displacement.

8. EFFECTIVE MAGNETIC PERMEABILITY

The next problem we face is to establish the relationship among the external (apparent)
magnetic field and the magnetic fields inside each of the phases. To find the distribution of
magnetic field between the two phases, one must solve in microscale the magnetic equations

V'BS = 0

VxW=o

for x E i1" and

V'Bf = 0

VXHf = 0

for x E 0', with the interfacial boundary conditions

BS . OS = _ Bf , of

H: = H{

(79)

(80)

(81)

(82)

(83)

(84)

for XES, where the subscript t denotes the component tangential to the surface. The
above equations are supplemented by a relation between Hand B. Based on the standard
assumption (Landau and Lifshitz, 1982), a linear relation is used

BS = flsHs (85)

(86)

where fls and J!. are, respectively, the magnetic permeability of the solid and fluid phase.
The magnetic permeability is a material property that is generally dependent on the density
for the fluid and the strain tensor for the solid. Solution of (79)-(86) subject to an external
magnetic field, with a real porous medium geometry, is virtually impossible.

To overcome the difficulty, we shall take the traditional porous medium approach of
using simple, conceptual models based on physical reasoning which can be validated by
experimental observations. Consider a porous medium made of plane layers of two kinds
ofmaterials having isotropic magnetic permeabilities fls and JI. In the first model, we assume
that the magnetic field is normal to the planes. It is clear from the above equations that the
magnetic inductions are constant in all media:

which leads to a jump in H,

B' = BI = 8 0 (87)
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HS = Bo

Il
s

BoHf=-
Ilf

(88)

(89)

Define the volume averaged fields as

ii = (l-¢)W +¢Hf

B = (l-¢)BS +¢Bf

It is easily shown that an effective permeability

(90)

(91)

(92)

exists such that

(93)

On the other hand, we assume in the second model that the magnetic field is parallel to the
planes. Hence H is continuous,

(94)

while B has a jump

(95)

(96)

The effective permeability that satisfies (93) is

(97)

In fact we observe that (97) is an algebraic mean while (92) is a harmonic mean. It can be
shown that Ilh ;:, 1lV" Particularly, if we assume that)! » 11" (92) shows that lletT ~ Ils

/ (I - ¢),
while (97) gives llefT ~ ¢}!.

Now consider two types of composite material: a non-ferromagnetic solid containing
isolated ferromagnetic inclusions, and a non-ferromagnetic porous matrix containing a
penetrating and connected ferromagnetic fluid. The effective permeability model of (92)
better describe the solid inclusion case while (97) is closer to the penetrating ferromagnetic
field case. In fact, we can visualize these cases as a magnetic flux seeking paths of least
magnetic resistance. For the solid inclusion case, the path is essentially blocked. It is obvious
that the ferromagnetic fluid saturated porous media is a much more effective ferromagnetic
material.

The above are conceptual models. A practical model needs to be built that is consistent
with the conceptual models, yet with coefficients determined from laboratory test. This is
introduced as follows. For an isotropic material we write
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(98)

where 'I is a partition coefficient dependent on the porous medium geometry. Following
(90) we obtain

Consequently

where

w=pJi

(99)

(100)

(101)

(102)

(103)

are weighing factors. We note that if '1 = 1, then Hs = Wand we have model 2 (unconnected
ferromagnetic material). If '1 = '!1J1s, we have (88) and (89), which is model 1 (connected
ferromagnetic material). In reality,

(104)

Given J1s and ,I, 'I is a function of porous media geometry and should be determined
experimentally.

For determining 'I, we should rely on the measurement of B, because it is the true
mean field and H is inferred from it. The effective value B must be correctly defined such
that it is consistent with its definition as the derivative of free energy, (44) and (45). We
find

(lOS)

This equation replaces (91). We observe that for the special case 'I = 1, (91) is satisfied,
and so does for the case 'I = pI/J1s. If we know the magnetic induction of each phase, and
can measure the effective value, 'I can be determined form (105).

We can now rewrite terms involving magnetic field of individual phases, as in (68),
(69), (75) and (78), in terms of the average magnetic field:

(106)

(107)

and
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9. MAGNETIC SUSCEPTIBILITY

The magnetization is related to the magnetic field as

M=XH

(108)

(109)

(110)

where X is known as the magnetic susceptibility. In a stationary case the magnetic sus
ceptibility ofa ferromagnetic liquid is proportional to the number concentration ofmagnetic
particles, n, and their individual magnetic moment, mH:

(111)

where the coefficient R depends on the magnetic field and the temperature, because the
temperature defines the degree of disordering of magnetic moments of the individual
particles. However, there are a number of mechanisms that can modify the stationary
equation. First, there are two kinds of relaxation processes: a fast process associated with
the orientation of particles along the direction of a local magnetic field, and a slow process
associated with the equalization of concentration of particles which is initially inhomo
geneous in space. The characteristic time of the first relaxation processes is extremely small
(Takeomi and Tickatsumi, 1988), about 10-9 s, and can be ignored when our interest lies
in mechanical processes. This is however not so for the slow process which smooths out
concentration inhomogeneities. In the general case, one has to add an equation of evolution
of local concentration of the magnetic particles. It is a diffusion equation corrected for the
interaction of particle with a magnetic field. In most cases of interest, the mechanical
processes are relatively fast so this diffusion process does not have time to come into play.
This leaves us only the mechanical process itself to consider. For this process we may
assume that the particle concentration is proportional to the density of liquid. As the
density increases due to mechanical deformation, so does the particle concentration. We
hence write

(112)

where pJ is the initial fluid density, and no is the initial particle number concentration. In
this case, the integral in (109) vanishes, and it simplifies to

j ' 1 2- -
pj[=-jJfH'H

8n
(113)

10. MECHANICAL EQUILIBRIUM

Using the definitions (72) and (76), we can sort (68) and (69) into the following:

(114)
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[(I +Ar-¢At)p~,-(l-¢)AtP:n]oij- I :¢ Cf ap
. 'f' a<e:t )

_ tIff f s- -(J"ij+ 4n B; H j - [(I +Ar-¢Af)Pli-(l-¢)ArPH]Oij (115)

We observe that the left sides of (114) and (lIS) are of mechanical origin as they contain
mechanical arguments ef, eS

, <eij), mechanical equations of state p:n(e", <eJ)) and P!n(Pf)'
and material coefficients As and Af . We note that As (Pf, e', <e:j ), H'(H), W (H» and Af
(Pf, e', <e:j ), H'(H), Hr(H» are functions of magnetic field. However, in the absence of such
a field, these coefficients approach their mechanical limits. In this form, (114) and (lIS)
help to distinguish the impact of magnetic forces (presented in the right sides) and the
impact of magnetic field on material parameters. Equations (114) and (lIS) together with
(50) and (51), which relate internal strains to external (apparent) strains, are the constitutive
equations that associate stresses with strains.

It is necessary to add to this system the proper equations of magnetic field:

VxH=O

(116)

(117)

with proper initial and boundary conditions.
Next, consider force equilibrium. The resultant forces per unit volume of solid and

fluid phases due to surface stresses, Qs and Qj, can be found by integrating the stresses over
the solid and fluid surfaces, S' and sj~ respectively

_I~ f Ii fQf - - (J"n·dS = - (J"··dO
Of Sf I] J of 0/ I1J

(118)

(119)

where we have applied the divergence theorem that converts surface integrals to volume
ones. The total resultant force per unit REV is

(120)

These average forces, adjusted from phase volume to total volume, must be equated to the
total volume averaged body force, inertia force, and interaction force between phases,
leading to the differential form of equilibrium equations:

(I-¢)()Jt,t = (I-¢)p,u; - (I-¢)p,g;-Ij (121)

(122)

where the overdots are used to denote differentiation with respect to time, gi is the gravi
tational vector component, and I j is the interaction force per unit volume. It is of interest
to remark that the derivation leading to (121) and (122) is valid for both homogeneous and
inhomogeneous (¢ being a function of space) materials. This is contrary to an earlier
presentation (Nikolaevskiy, 1984) which indicated the existence of an interaction force
resulting from the variation of porosity.

Equations (121) and (122) can be summed to give the equilibrium equation ofcombined
phases
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(123)

where (Jij = (1- cP )(J:j + 1)(J£ is the total stress tensor and P = (1 - cP )Ps + cPPI is the bulk
density.

The interaction force is created by the relative motion between the solid and fluid
phase and consists of two parts

(124)

where Pa is the added mass density (Biot, 1956a) attributed to the momentum transfer
between solid and fluid, b is a resistivity coefficient, and

(125)

is the relative fluid-solid displacement. In fact, under general condition the interaction force
should be written as 1= Y{ w,} where Y is a differential operator of time such that it
incorporates the fluid inertia, viscosity, apparent (frequency-dependent) viscosity, and
other fluid rheological effects (Biot, 1962).

11. LINEARIZED MECHANICAL MODEL

For a better understanding of the structure of the present theory, let us consider its
linearized variants. We can consider two kinds of linearization. The first kind is a partial
linearization which considers the medium to be linear from the mechanical point-of-view.
The problem remains nonlinear due to the magnetic field. The second kind of linearization
is a complete linearization in which the magnetic parts of the equations are also linearized.
This requires that the changes of magnetic field due to medium deformation or other causes
be small. We shall consider the mechanical linearization first.

Under linear assumption, we can write the following constitutive relations:

p;" = -K,e' (126)

(127)

where K, and KI are, respectively, the bulk modulus of solid and fluid phase. In the above
we have denoted bpt!PI = - be/~ and then dropped the variation notation b in be' and bel
for consistency with common notation. From the free energy term we obtain

(128)

where G, is the shear modulus of the solid phase, and we have used the definition in (43).
Substituting (126) to (128) into (114) and (115), and dropping for the moment the magnetic
terms, we obtain

(129)

(130)

where the fluid is assumed to be Newtonian, hence we have set CI = 0, and the porosity cP
is replaced by its initial value cPo.
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To model the bulk continuum behavior, the internal strains in (129) and (130) must
be converted to the external ones, which are the apparent strains of the REV. Utilizing
(50), (51) and (55), the above equations become

(131)

(132)

where the coefficients are

Equation (132) can be contracted to obtain a (negative) fluid pressure (II = ~(I{, hence

(139)

We note that (131) and (139) are now at the same level as the linear poroelasticity theory
of Biot (1941).

12. LINEARIZED MAGNETIC MODEL

Next, consider the case of complete linearization. In the presence of a magnetic field,
we need to take into account the existence of an initial stress and a stationary magnetic
field. The stress and magnetic quantities sought for are perturbations from their initial
states. Assume that the initial magnetic field is 0°, and the perturbation 0 from it is a small
quantity. Following (113), we note that the magnetic pressure can be expressed in the
linearized form:

(140)

Also, we can write in the first-order:

BfHJ = BJoHfo+B/H/o+BlojjJ
1) 1 ) I J 'J

(141)

in which we have utilized (74) and (101) and used the notation 0° to denote initial value,
and (-) for perturbed quantities. In accordance with (110) and (112), we find

(142)

where Rio = Ri(ut°, T). From the perturbation of (110) and (112) we obtain
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in which
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-f 0 - f -0 - 0 -0 fM i = f3rnomH(R Hi + f3f 8R/Hi Hf-R Hie)

o - J. -0 -= f3fnOmH[R Hi+f3f8R/Hi~

A. 0 -0 0 -0 f- (1 - 'Yo)R Hi Ass" - R Hi (1 +Af - cPo Af)s 1 (143)

(144)

After substitution of (140) to (143) into (114) and (115), and dropping the initial states, we
can present these equations in the form :

where

(147)

(148)

(149)

(150)

(151 )

(152)

It should be noted that in the above we assumed the solid phase to be magnetically inert
such that the solid part of magnetic pressure and stress does not exist. We observe in (145)
and (146) that even if the structural coefficients An Aj , etc. are assumed to be independent
of the magnetic field, still the effective modulus of medium manifests such dependence,
because of the additional "magnetic solidity". We also note that despite the fluid is con
sidered Newtonian, shear stress exists in the fluid phase due to the fact that the magnetic
field is a vector field.

We assume that at the initial state the medium is in mechanical equilibrium such that
we only need to consider the perturbed terms as shown above. These constitutive equations
(145) and (146) can be substituted into the equilibrium equations (121) and (122) to
eliminate the stress expressions. To form a complete solution system, the equations of the
magnetic field must be introduced and linearized. Based on (74), (116), (117) and (143),
we find

in which

VxH=O

(153)

(154)

(155)



A thermodynamically consistent formulation of magnetoporoelasticity 4657

(156)

(157)

(158)

We observe from (145), (146) and (153) that these equations are coupled. The system (121),
(122), (145), (146), (153) and (154) requires associated boundary conditions in mechanical
variables as well as for a magnetic field. It is then suitable for a mathematical solution.

13. CONCLUSION

We have constructed, following thermodynamic considerations of virtual displacement
and free energy, the continuum mechanics model of a porous medium saturated with a
ferromagnetic fluid. Although the mechanics of poroelastic medium has been traditionally
constructed through phenomenological approach, such as that of Biot (1941, 1962) and
others (Detournay and Cheng, 1993; Nikolaevskiy, 1996), the current thermodynamic
construction is essential for the following reasons:

(1) its ability to model irreversible deformation due to permanent pore structure changes;
(2) its ability to model incrementally nonlinear behavior of porous medium; and
(3) the use of internal and external strain variables and their role in external work and

internal energy allows us to correctly model the coupling of the mechanical and the
magnetic field.

To our knowledge, no such model, linear or nonlinear, has previously been constructed. It
becomes useful to provide a linearized, more tractable version of the general theory. Such
a model is presented. It is demonstrated that in the absence of a magnetic field, the linearized
model is consistent with the Biot theory.
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